Specific solvation interactions of CO2 on acetate and trifluoroacetate imidazolium based ionic liquids at high pressures.

نویسندگان

  • Pedro J Carvalho
  • Víctor H Alvarez
  • Bernd Schröder
  • Ana M Gil
  • Isabel M Marrucho
  • Martín Aznar
  • Luís M N B F Santos
  • João A P Coutinho
چکیده

New classes of acidic or basic ionic liquids (ILs) are gaining special attention, since the efficiency of many processes can be enhanced by the judicious manipulation of these properties. The absorption of sour gases can be enhanced by the basic character of the IL. The fluorination of the cation or the anion can also contribute to enhance the gas solubility. In this work these two characteristics are evaluated through the study of the gas-liquid equilibrium of two ionic liquids based on similar anions, 1-butyl-3-methylimidazolium acetate ([C4mim][Ac]) and 1-butyl-3-methylimidazolium trifluoroacetate ([C4mim][TFA]), with carbon dioxide (CO2) at temperatures up to 363 K and pressures up to 76 MPa. The data reported are shown to be thermodynamically consistent. Henry's constants estimated from the experimental data show the solubility of CO2 on the [C4mim][Ac] to be spontaneous unlike in [C4mim][TFA] due to the differences in solvation enthalpies in these systems. Ab initio calculations were performed on simple intermolecular complexes of CO2 with acetate and trifluoroacetate using MP2/6-31G(d) and the G3 and G3MP2 theoretical procedures to understand the interactions between CO2 and the anions. The theoretical study indicates that although both anions exhibit a simultaneous interaction of the two oxygen of the carboxylate group with the CO2, the acetate acts as a stronger Lewis base than the trifluoroacetate. 13C high-resolution and magic angle spinning (HRMAS) NMR spectra provide further evidence for the acid/base solvation mechanism and the stability of the acetate ion on these systems. Further similarities and differences observed between the two anions in what concerns the solvation of CO2 are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon dioxide in 1-butyl-3-methylimidazolium acetate. I. Unusual solubility investigated by Raman spectroscopy and DFT calculations.

The unusual solubility of carbon dioxide in 1-butyl-3-methylimidazolium acetate (Bmim Ac) has been studied by Raman spectroscopy and DFT calculations. It is shown that the solubility results from the existence of two distinct solvation regimes. In the first one (CO(2) mole fraction ≤ 0.35), the usual Fermi dyad is not observed, a fact never reported before for binary mixtures with organic liqui...

متن کامل

Understanding the mechanism of CO2 capture by 1,3 di-substituted imidazolium acetate based ionic liquids.

Efficient CO2 capture by ionic liquids needs a thorough understanding of underlying mechanisms of the CO2 interaction with ionic liquids, especially when it involves chemisorption. In this work we have systematically investigated the mechanism of CO2 capture by 1,3 di-substituted imidazolium acetate ionic liquids using density functional theory. Solvent effects are analyzed using QM/MM and QM/Q...

متن کامل

Modeling of the carbon dioxide solubility in imidazolium-based ionic liquids with the tPC-PSAFT equation of state.

In this work, an equation of state (EoS) is developed to predict accurately the phase behavior of ionic liquid + CO2 systems based on the truncated perturbed chain polar statistical associating fluid theory (tPC-PSAFT) EoS. This EoS accounts explicitly for the dipolar interactions between ionic liquid molecules, the quadrupolar interactions between CO2 molecules, and the Lewis acid-base type of...

متن کامل

Theoretical investigations of ferrocene/ferrocenium solvation in imidazolium-based room-temperature ionic liquids.

The ferrocene/ferrocenium (Fc/Fc(+)) redox couple has been deemed one of the best candidates of the standard electrochemical reference for redox reactions in ionic liquids (ILs). To fully reveal the redox reaction mechanism in the IL condensed phase, solvation, as a prerequisite, apparently needs to be understood. As a preliminary attempt to study the solvation of Fc/Fc(+) in imidazolium-based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 113 19  شماره 

صفحات  -

تاریخ انتشار 2009